Photocatalytic hydrogen evolution reaction activity comparable to 1-D nanofiber materials exhibited by the kesterite nanorods catalysts
Gizem Yanalak,
Adem Sarılmaz,
Emre Aslan,
Faruk Ozel and
Imren Hatay Patir
Renewable Energy, 2020, vol. 150, issue C, 469-475
Abstract:
Copper-based earth-abundant chalcogenides (kesterite) such as Cu2CoSnS4 and Cu2NiSnS4 are important class due to their outstanding performance and earth-abundant composition. Here, we have successfully synthesized Cu2CoSnS4, Cu2NiSnS4 and Cu2ZnSnS4 nanorods by a hot-injection technique. The photocatalytic hydrogen production activities of rod-like Cu2XSnS4 (X = Co, Ni and Zn) catalysts have been investigated by using electron donor triethanolamine and photosensitizer eosin-Y under visible-light irradiation. The hydrogen evolution rates for the nanorods change in the order of Cu2NiSnS4> Cu2CoSnS4> Cu2ZnSnS4 (5117 μmolg−1h−1, 1342 μmolg−1h−1 and 719 μmolg−1h−1) respectively. The hydrogen evolution activities of Cu2XSnS4 nanorods have been compared to that of nanofiber and nanodot forms of Cu2XSnS4 catalysts. Cu2XSnS4 nanorods have been showed comparable photocatalytic activity for the hydrogen evolution compared with 1-D nanofiber Cu2XSnS4 catalysts.
Keywords: Hydrogen evolution; Nanorods; Kesterite; Cu2CoSnS4; Cu2NiSnS4 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120300185
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:150:y:2020:i:c:p:469-475
DOI: 10.1016/j.renene.2020.01.017
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().