EconPapers    
Economics at your fingertips  
 

Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles

Antonio García, Javier Monsalve-Serrano, Santiago Martínez-Boggio, Vinícius Rückert Roso and Nathália Duarte Souza Alvarenga Santos

Renewable Energy, 2020, vol. 150, issue C, 58-77

Abstract: The strong new restrictions in the vehicle CO2 emissions together with the instability of the fossil fuels reserves reinforces the necessity to continue developing high efficiency combustion engines that operate with renewable energy sources. Bio-ethanol appears as a potential fuel to replace well-established fossil fuels, such as gasoline, due to the overall carbon neutral emission. In addition, the high-octane number allows to increase the compression ratio of the engine to improve the thermal efficiency. Apart from the CO2, the emissions legislation restricts the NOx and particle matter emissions to ultra-low values, and they will continue decreasing down to almost zero. In this work, two advanced dual-fuel combustion modes using bio-ethanol as main fuel are studied. A pre-chamber ignition system (PCIS) using bio-ethanol and hydrogen, and a reactivity-controlled compression ignition (RCCI) combustion mode operating with bio-ethanol/diesel was selected due to the potential to reduce NOx emissions. These combustion technologies were studied by a numerical 0-D vehicle simulations in homologation and real-life driving cycles for a range extender hybrid powertrain. As a baseline, the original manufacturer spark ignition (SI) no-hybrid powertrain fueled with pure bio-ethanol was used. The powertrain components and control system were optimized to obtain the maximum overall vehicle efficiency, and low CO2-NOx emissions. Finally, a life cycle analysis (LCA) was performed to study the global potential of the bio-ethanol to reduce greenhouse gas (GHG) emissions. A battery electric vehicle (BEV) and a gasoline SI no-hybrid vehicle were added for comparison. The results show that the RCCI mode presents the highest potential to reduce the NOx emissions. However, the PCIS allows to reduce the tank to wheel CO2 emissions up to 60 g/km when high rates of H2 are used. The LCA-GHG for the vehicles using bio-ethanol is 50% and 95% lower than a BEV and SI-gasoline vehicle, respectively.

Keywords: Pre-chamber; RCCI; Bio-ethanol; Hybrid powertrain; Emissions regulations; Driving cycles (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119319743
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:150:y:2020:i:c:p:58-77

DOI: 10.1016/j.renene.2019.12.102

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:150:y:2020:i:c:p:58-77