Stabilization of K2CO3 in vermiculite for thermochemical energy storage
A.I. Shkatulov,
J. Houben,
H. Fischer and
H.P. Huinink
Renewable Energy, 2020, vol. 150, issue C, 990-1000
Abstract:
Thermochemical energy storage (TCES) is an emerging technology promising for domestic applications. Recently, K2CO3 was identified and studied as a TCES material. In this work, the composite “K2CO3 in expanded vermiculite” (69 wt. % of the salt) was prepared and studied for thermochemical energy storage bearing in mind its application for space heating. The hydration rate was found to be higher for the confined K2CO3 in comparison with K2CO3 granules of the same size. While morphology and texture of the composite alter after 74 hydration/dehydration cycles, its chemical composition and average grain size do not change. The energy storage density of the composite bed can reach 0.9 GJ/m3 (250 kWh/m3) for cycles with deliquescence which makes the composite an inexpensive thermochemical material for space heating. Stable conversion for deliquescence conditions was shown for at least 47 cycles.
Keywords: Thermochemical energy storage; Sorption heat storage; Potassium carbonate; Salt hydrates; Composites; Vermiculite (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119318130
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:150:y:2020:i:c:p:990-1000
DOI: 10.1016/j.renene.2019.11.119
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().