EconPapers    
Economics at your fingertips  
 

Highly efficient renewable heterogeneous base catalyst derived from waste Sesamum indicum plant for synthesis of biodiesel

Biswajit Nath, Pranjal Kalita, Bipul Das and Sanjay Basumatary

Renewable Energy, 2020, vol. 151, issue C, 295-310

Abstract: Waste Sesamum indicum plant derived heterogeneous catalyst was utilized for the first time for biodiesel synthesis from sunflower oil. The derived catalyst was characterized by using Powder XRD, FT-IR, BET, TGA, XRF, AAS, XPS, SEM-EDX and TEM, and the characterization revealed the presence of Na, K, Ca, Mg, Fe, Mn, Zn, Si, Sr and Cl with high percentage of K (29.64 wt %) and Ca (33.80 wt %) as oxides and carbonates. The catalyst with a moderate surface area of 3.66 m2 g−1 exhibited excellent catalytic activity producing a yield of 98.9% biodiesel under the optimized conditions of 12:1 methanol to oil molar ratio and catalyst loading of 7 wt % at the reaction temperature of 65 °C in a short reaction time of only 40 min. The catalyst could be reused up to the 3rd cycle of reaction with the yield of 94.2% biodiesel. The characterization of biodiesel was done by using FT-IR, NMR, and GC-MS techniques. The fuel property of produced biodiesel meets the prescribed limits of international standard. The prepared catalyst is easy to handle, reusable, and found to be highly efficient green catalyst that could help in reduction of biodiesel cost. Thus, the catalyst can be recommended as a potential candidate for cost-effective biodiesel production at a large scale.

Keywords: Biodiesel; Heterogeneous catalyst; Sunflower oil; Transesterification; Waste Sesamum indicum (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119317100
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:151:y:2020:i:c:p:295-310

DOI: 10.1016/j.renene.2019.11.029

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:151:y:2020:i:c:p:295-310