EconPapers    
Economics at your fingertips  
 

Machine-learning based study on the on-site renewable electrical performance of an optimal hybrid PCMs integrated renewable system with high-level parameters’ uncertainties

Yuekuan Zhou, Siqian Zheng and Guoqiang Zhang

Renewable Energy, 2020, vol. 151, issue C, 403-418

Abstract: The uncertainty and sensitivity analyses for multivariables of the optimal system based on deterministic parameters are necessary, as multivariables are full of uncertainties in the real operation. However, the generic methodology for multi-dimensional uncertainties quantification is rare, and the energy performance simulation is normally at high computational cost, especially considering a huge amount of parameters’ uncertainties. In this study, the on-site renewable electricity generation of an optimal hybrid renewable system based on deterministic parameters, was investigated, under high-level parameters’ uncertainties. A generic uncertainty quantification methodology was proposed using the two-dimensional Markov Chain Monte Carlo to quantify multi-dimensional uncertainties. A machine-learning based data-driven model, using the supervised machine learning with high computational efficiency, was developed to predict the on-site renewable electricity generation, and thereafter used for the uncertainty and sensitivity analyses. Compared with the deterministic scenario parameters, the cases with the scenario uncertainties can increase the peak power and the total amount of the on-site renewable electricity generation. This study proposes a novel generic uncertainty quantification methodology, together with a machine-learning based data-driven model for conducting the uncertainty analysis of an optimal renewable system based on deterministic parameters, which are important for the promotion of renewable and sustainable buildings.

Keywords: Phase change materials; On-site renewable generation; Uncertainty quantification; Data-driven model; Supervised machine learning; Uncertainty analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119317185
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:151:y:2020:i:c:p:403-418

DOI: 10.1016/j.renene.2019.11.037

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:151:y:2020:i:c:p:403-418