Enhancement of productivity of Chlorella pyrenoidosa lipids for biodiesel using co-culture with ammonia-oxidizing bacteria in municipal wastewater
Xu Zhou,
Wenbiao Jin,
Qing Wang,
Shida Guo,
Renjie Tu,
Song-fang Han,
Chuan Chen,
Guojun Xie,
Fanqi Qu and
Qilin Wang
Renewable Energy, 2020, vol. 151, issue C, 598-603
Abstract:
As one of the most promising renewable energy, microalgal biodiesel has been widely studied worldwide. However, the low-efficiency of conventional microalgae cultivation procedures restrict the development of microalgae biodiesel production. Microalgal-bacterial symbiosis could both enhance the growth of algal-bacterial culture and promote the removal and conversion of wastewater nutrients. In this study, three strains of high-efficient heterotrophic ammonia-oxidizing bacteria JN1, FN3, and FN5 were screened from municipal wastewater treatment system with over 80% degradation rates of 50 mg/L ammonia-nitrogen (NH3–N) in 24 h. Among them, FN5, belonging to Kluyvera sp., had the optimum effect on enhancing growth of oil-rich microalga Chlorella pyrenoidosa. In stationary phase, the biomass and lipid content of Chlorella pyrenoidosa was14.8% and 13.6% higher than the blank control tests without FN5. In contrast, JN1 and FN3 failed to enhance the growth of Chlorella pyrenoidosa. After the cultivation of Chlorella pyrenoidosa-FN5 consortia in municipal wastewater, the degradation rate of NH3–N was up to 91% while the content of microalgae biomass and lipid attained 0.35 g/L and 39.0%. The Saturated fatty acids (SFAs), Monounsaturated fatty acids (MUFAs), and Polyunsaturated fatty acids (PUFAs) were 43.9, 37.1 and 19.0%, respectively, which had the potential for biodiesel production after pretreatment.
Keywords: Ammonia-degrading bacteria; Biodiesel; Chlorella pyrenoidosa; Lipid; Microalgae (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119317501
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:151:y:2020:i:c:p:598-603
DOI: 10.1016/j.renene.2019.11.063
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().