Numerical investigation of concentrating photovoltaic/thermal (CPV/T) system using compound hyperbolic –trumpet, V-trough and compound parabolic concentrators
Abid Ustaoglu,
Umut Ozbey and
Hande Torlaklı
Renewable Energy, 2020, vol. 152, issue C, 1192-1208
Abstract:
A novel configuration of concentrating-photovoltaic system, compound hyperbolic concentrator-trumpet photovoltaic-thermal system (CHCT-PVT), has been proposed to enhance electrical-efficiency by reducing reflector size. CHCT-PVT was compared with the conventional non-imaging concentrators; V-trough-PVT (VT-PVT) and compound parabolic concentrator-PVT (CPC-PVT) systems. 2D-Ray-tracing analysis was carried out to decide energy flux. The numerical investigation was applied to decide the PV-cell-temperature. The electrical performances were determined regarding cell-temperature and solar radiation intensity. The results show that the CHC-PVT system can generate almost the same electrical power with that of CPC and V-trough system at the normal incidence angle, although CHC requires almost half size as V-trough or CPC for same concentration. It will forge ahead CHC for a CPVT using a sun tracking system. The largest electrical-efficiency was achieved for the CHC system. The electrical efficiencies of PVs using CPC, V-trough, and CHC-trumpet are 18.44%, 18.51%, and 18.59%, respectively. CHCT-PVT, the power output was about 42.9% higher than the CPC-PVT and about 58.97% higher than the VT-PVT systems per the reflector unit area. The results indicate that the CHCT-PVT system is a preferable alternative to CPVTs using conventional non-imaging reflectors. CHC may provide more apparent advancement for a CPV-system.
Keywords: Photovoltaic-thermal; Compound parabolic concentrator; V-trough; Compound hyperbolic concentrator; Trumpet; Ray-tracing; Uniformity (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120301166
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:152:y:2020:i:c:p:1192-1208
DOI: 10.1016/j.renene.2020.01.094
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().