EconPapers    
Economics at your fingertips  
 

Solar irradiance forecasting models without on-site training measurements

Andres Felipe Zambrano and Luis Felipe Giraldo

Renewable Energy, 2020, vol. 152, issue C, 557-566

Abstract: Much effort has been made to increase the integration of solar photovoltaic (PV) systems to reduce the environmental impacts of fossil fuels. An essential process in PV systems is the forecasting of solar irradiance to avoid safety and stability problems due to its intermittent nature. Most of the research has been focused on improving the prediction accuracy based on the assumption that enough on-site training data are available. However, in many situations, it is required for the implementation of PV systems in locations where not enough solar irradiance measurements have been collected. Our hypothesis is that measurements from other sites can be used to train accurate forecasting models, given an appropriate definition of site similarity. We propose a methodology that takes information from exogenous variables that are correlated to on-site solar irradiance and constructs a multidimensional space equipped with a metric. Each site is a point in this space, and the learned metric is used to select those sites that can provide measurements to train an accurate forecasting model on an unobserved site. We show through experiments with real data that using the learned metric provides better predictions than using the measurements collected from the whole set of available sites.

Keywords: Solar irradiance forecasting; Satellite measurements; Metric learning; PV power systems; Machine learning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120301142
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:152:y:2020:i:c:p:557-566

DOI: 10.1016/j.renene.2020.01.092

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:152:y:2020:i:c:p:557-566