Emerging paraffin/carbon-coated nanoscroll composite phase change material for thermal energy storage
Xiaochao Zuo,
Jianwen Li,
Xiaoguang Zhao,
Huaming Yang and
Deliang Chen
Renewable Energy, 2020, vol. 152, issue C, 579-589
Abstract:
Thermal energy storage using phase change materials is considered as a significant strategy for relieving the energy crisis. Herein an emerging paraffin-based composite form-stable phase change material (FSPCM) was fabricated using carbon-coated nanoscroll (CAN) as supporting material prepared via in-situ carbonizing the delaminated kaolinite (Kaol). The effect of carbonization temperature on the thermal performance of composite FSPCM was investigated. The samples were characterized using XRD, FTIR, DSC, XPS, SEM, TEM, TG, and nitrogen adsorption-desorption isotherms. The results indicated that the pore properties of the exfoliated and carbonized Kaol significantly increased, which was beneficial to the high loading and leakage-proof. The optimum paraffin content of CAN composite FSPCMs without leakage is 60.63%, 63.14%, and 59.99% for calcination at 600 °C, 700 °C, and 800 °C, respectively. Paraffin/CAN composite FSPCMs have the phase temperatures of 51–58 °C and high latent heat of 123–142 J/g. Compared with pure paraffin, the thermal conductivities of paraffin/CAN composite FSPCMs were increased by 1.98, 1.92, and 2.01 times for calcination at 600 °C, 700 °C, and 800 °C, respectively. The composite FSPCMs exhibit excellent thermal and chemical stability after 1000 thermal cycles, indicating that paraffin/CAN composite FSPCMs have excellent potential in the solar energy storage system.
Keywords: Phase change materials; Thermal energy storage; Kaolinite; In-situ carbonization; Nanocscroll (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120301063
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:152:y:2020:i:c:p:579-589
DOI: 10.1016/j.renene.2020.01.087
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().