A simulation study on performance improvement of solar assisted heat pump hot water system by novel controllable crystallization of supercooled PCMs
Cagri Kutlu,
Yanan Zhang,
Theo Elmer,
Yuehong Su and
Saffa Riffat
Renewable Energy, 2020, vol. 152, issue C, 601-612
Abstract:
Domestic hot water (DHW) has a significant share in building’s energy consumption. In order to reduce this consumption, various solutions have been proposed such as controlling the system in an efficient way, using renewable sources and using phase change materials (PCM) in the system to increase heat capacity. However, this study is not only offering heat capacity improvement of the DHW storage unit but also proposing that energy efficiency can be improved by controlling the heat releasing time of the PCM. In this study, supercooled PCM tubes are placed in a water tank and charged with a solar assisted heat pump unit, these supercooled PCM tubes can then be discharged anytime when the hot water is required. In this paper, a transient thermodynamic model is built for the whole system including solar collector, heat pump, water tank with PCM and DHW demand profile. System components are modelled and a 24 h of demand profile is used in simulation for a UK home for summer and spring weather conditions. The results show that the PCM tubes effectively compensate the morning peak hot water demand and reduce daily energy consumption around 12.1% and 13.5% by shifting heating provision from immersion heater to solar heat pump.
Keywords: Supercooled PCM; Solar assisted heat pump; DHW; Transient thermodynamic simulation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120301099
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:152:y:2020:i:c:p:601-612
DOI: 10.1016/j.renene.2020.01.090
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().