EconPapers    
Economics at your fingertips  
 

A novel integrated solar gas turbine trigeneration system for production of power, heat and cooling: Thermodynamic-economic-environmental analysis

Yousef N. Dabwan and Gang Pei

Renewable Energy, 2020, vol. 152, issue C, 925-941

Abstract: This article introduces the results of a thermodynamic-economic-environmental analysis of conventional and integrated solar gas turbine trigeneration power plants based on parabolic trough collectors. The trigeneration plants are required to produce electricity with 90 MWe (from steam-turbines), 2500 kg/s of chilled water at 7 °C and 10 bars, and 34.8 kg/s of industrial process steam at 500 °C and 27.6 bars. The hourly and yearly performance of the considered plants with different gas turbine and solar field sizes have been examined and presented. In addition, a conceptual procedure to identify the optimal solar integration configuration has been developed and presented. Furthermore, the off-design behavior and regional potential of the optimally solar integration configuration have been assessed. The study reveals that the optimal configuration is the integration of 126 ha of parabolic trough collector’s solar field (46.2 ha of the total active aperture area) with the trigeneration plant of 130 MWe gas turbine size, which gives a levelled electricity cost of 5.75 USȻ/kWh with 114 k-tonne reduction of the annual CO2 emissions. Moreover, the study shows that the most proper location to utilize the solar hybrid power plants is in locations with high levels of solar irradiance and low ambient temperature.

Keywords: Trigeneration; Parabolic trough collector; Cooling; Heat; Thermodynamic and economic performance; Power plant (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120301075
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:152:y:2020:i:c:p:925-941

DOI: 10.1016/j.renene.2020.01.088

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:152:y:2020:i:c:p:925-941