Numerical investigations of the energy performance and pressure fluctuations for a waterjet pump in a non-uniform inflow
Xianwu Luo,
Weixiang Ye,
Renfang Huang,
Yiwei Wang,
Tezhuan Du and
Chenguang Huang
Renewable Energy, 2020, vol. 153, issue C, 1042-1052
Abstract:
As a way of exploitation and utilization of ocean energy, the waterjet pump is used in a wide range of high-speed marine vessels over 30 knot. This paper aims to investigate the mechanism of the energy loss and pressure fluctuations caused by the non-uniform inflow for a waterjet pump. Unsteady internal flows inside the waterjet pump are simulated using the Reynolds-averaged Navier-Stokes equations with the SST k-ω turbulence model. The predicted pump head and efficiency are in reasonable accordance with the experimental data. The inflow non-uniformity would decrease the hydraulic head, efficiency and increase the axial force fluctuations in the impeller, causing large pulsations in the unsteady energy performance. Based on analyses of the energy loss, the turbulent kinetic energy production and the diffusion of the Reynolds stress are major sources of the energy loss in the waterjet pump. The non-uniform inflow induces a dramatic energy loss in the intake duct and diffuser with an apparent flow separation observed near the trailing edge of the diffuser blade. Due to the inflow non-uniformity, the pressure fluctuates violently at the impeller rotating frequency (fn) in the intake duct, impeller and near the diffuser inlet, but a dominant frequency of 2fn is generated by the unsteady flow separation near the diffuser outlet.
Keywords: Waterjet pump; Energy performance; Pressure fluctuation; Numerical simulation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120302767
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:153:y:2020:i:c:p:1042-1052
DOI: 10.1016/j.renene.2020.02.081
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().