Thermodynamic equilibrium analysis of H2-rich syngas production via sorption-enhanced chemical looping biomass gasification
Rei-Yu Chein and
Wen-Huai Hsu
Renewable Energy, 2020, vol. 153, issue C, 117-129
Abstract:
In this study, thermodynamic equilibrium analysis of the sorption-enhanced chemical looping biomass gasification (SE-CL-BG) using Fe2O3 as the oxygen carrier, CaO as the CO2 sorbent, and CO2 or H2O as the gasifying agent for producing H2 rich syngas was conducted. Based on the amount of OC introduced, highly selective syngas can only result when a small amount of oxygen carrier is introduced. Due to carbon and hydrogen oxidations, the yields of CO and H2, cold gas efficiency, and the second-law efficiency of SE-CL-BG case were found to be lower than the conventional biomass gasification case in which no oxygen carrier and CO2 sorbent were introduced. Compared with conventional biomass gasification, the advantage of SE-CL-BG is that biomass gasification can be operated at lower temperatures (500–750 °C) with higher H2 yield due to the enhanced water-gas shift reaction and lower heat duty due to heat release from the CO2 absorption reaction. The computed results indicated that CaO loses the ability to absorb CO2 as the temperature becomes higher than 800 °C.
Keywords: Sorption-enhanced chemical looping biomass gasification (SE-CL-BG); Thermodynamic analysis; Gasifying agent; Oxygen carrier; And CO2 sorbent (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119315885
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:153:y:2020:i:c:p:117-129
DOI: 10.1016/j.renene.2019.10.097
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().