EconPapers    
Economics at your fingertips  
 

Numerical analysis of the influence of air compressibility effects on an oscillating water column wave energy converter chamber

Rafael A.A.C. Gonçalves, Paulo R.F. Teixeira, Eric Didier and Fernando R. Torres

Renewable Energy, 2020, vol. 153, issue C, 1183-1193

Abstract: The most studied device used for extracting wave energy is the Oscillating Water Column (OWC). In general, numerical simulations of these cases by means of models based on Reynolds Averaged Navier-Stokes equations adopt the Volume of Fluid method to deal with the free surface flow which is considered incompressible in both water and air. The aim of this study is to investigate the influence of the compressibility effect on the air inside the OWC chamber by the FLUENT® numerical model. A methodology is implemented, taking into account both water and air flows incompressible, but, at every instant, a pressure condition is imposed on the top boundary of the chamber to consider the compressibility effect. This pressure condition is based on an analytical equation that considers the isentropic transformation of the air and effects of Wells and impulse turbines. Results of compressible and incompressible numerical models are compared. The amplification factor, the root mean square of air pressure inside the chamber and OWC efficiency in relation to incident wave period, wave height and turbine characteristic relation are analyzed. Results show that air compressibility effects can diminish the predicted OWC efficiency up to about 20% in both Wells and impulse turbines.

Keywords: Wave energy; Oscillating water column device; Numerical simulation; Volume of fluid; Air compressibility (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120302755
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:153:y:2020:i:c:p:1183-1193

DOI: 10.1016/j.renene.2020.02.080

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:153:y:2020:i:c:p:1183-1193