Synergistic effects between Cu and Ni species in NiCu/γ-Al2O3 catalysts for hydrodeoxygenation of methyl laurate
Caixia Miao,
Guilin Zhou,
Shuang Chen,
Hongmei Xie and
Xianming Zhang
Renewable Energy, 2020, vol. 153, issue C, 1439-1454
Abstract:
Cu was introduced into Ni/γ-Al2O3 to prepare mesoporous NixCuy/γ-Al2O3 catalysts with different Ni and Cu contents. H2-TPR, XRD, BET, H2-TPD, and in-situ XPS were used to study the physicochemical properties of the prepared NixCuy/γ-Al2O3 catalysts. The catalytic performances of NixCuy/γ-Al2O3 catalysts were evaluated by methyl laurate catalytic hydrodeoxygenation (HDO) reaction. The NixCuyO/γ-Al2O3 precursors can be reduced to Ni0, Cu0, and NiCu alloy active species by H2 at 420°C. Formed NiCu alloy can effectively promote the electronic effect between Ni and Cu, and enhance the adsorption and activation abilities of the corresponding catalyst for the reactant molecules. The Ni active sites preferentially catalyzes the decarbonylation/carboxyl (DCO) reaction in the deoxygenation of methyl laurate, while the HDO pathway is predominant on the Cu active sites. The deoxygenation pathway obviously changes from DCO to HDO at the mole ratio of Ni/Cu lower than 3/7, and the main deoxygenation products change from C11 to C12 alkane. At the H2/Oil ratio of 500N, the space velocity (SV) of 1.5 h−1, H2 pressure(P) of 2 MPa, and the reaction temperature of 380°C, the Ni3Cu7/γ-Al2O3 catalyst shows the best methyl laurate DCO properties. And methyl laurate conversion and the main deoxygenation products C11 alkane selectivity can reach 98.3 and 87.4%, respectively. Moreover, Ni3Cu7/γ-Al2O3 catalyst also exhibits good stability.
Keywords: Mesoporous NixCuy/γ-Al2O3 catalyst; Electronic effect; Pore structure; Hydrodeoxygenation; Methyl laurate (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120302949
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:153:y:2020:i:c:p:1439-1454
DOI: 10.1016/j.renene.2020.02.099
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().