EconPapers    
Economics at your fingertips  
 

Analyzing thermal properties of solar evacuated tube arrays coupled with mini-compound parabolic concentrator

En-Tong Xia and Fei Chen

Renewable Energy, 2020, vol. 153, issue C, 155-167

Abstract: Effective utilization of solar energy resource enables to improve the thermal performance of solar evacuated tube. In present work, the back side of solar vacuum tube was coupled with mini-compound parabolic concentrator (mini-CPC). The thermal characteristics of the presented mini-CPC solar vacuum tube were analyzed theoretically and experimentally. A mathematical model of heat transfer for the mini-CPC vacuum tube was established according to the energy conservation, and solved by iterative calculation based on home-built C programming language. The obtained numerical solutions fit in well with the experimental results. Furthermore, analysis indicates the vacuum interlayer plays a crucial role in hindering heat transfer. The thermal-convection resistance (Rco-air,conv) dominates the heat loss from cover tube to ambient rather than thermal-radiation resistance (Rco-sky,rad). The measured final temperature increment of working water for the mini-CPC and ordinary evacuated tube can reach 63.4 K and 49.8 K, respectively. An experimental result also reveals that the thermal efficiency of the mini-CPC vacuum tube is increased by 24.3%–29.2% compared with that of vacuum tube without mini-CPC, considering various weather conditions. Consequently, the designed mini-CPC evacuated tube shows a preferable performance, which may provide a certain reference in technology for engineering applications.

Keywords: Solar energy; Vacuum /evacuated tube; Compound parabolic concentrator (CPC); Heat transfer; Efficiency (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812030197X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:153:y:2020:i:c:p:155-167

DOI: 10.1016/j.renene.2020.02.011

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:153:y:2020:i:c:p:155-167