Used-cooking-oil biodiesel: Life cycle assessment and comparison with first- and third-generation biofuel
Spyros Foteinis,
Efthalia Chatzisymeon,
Alexandros Litinas and
Theocharis Tsoutsos
Renewable Energy, 2020, vol. 153, issue C, 588-600
Abstract:
The environmental sustainability of second-generation biodiesel (used-cooking-oil) was examined, at industrial-scale, in Greece. The total carbon and environmental footprint per tonne of biodiesel production was ∼0.55t CO2eq (i.e. ∼14g CO2eq/MJ) and 58.37 Pt, respectively. This is ∼40% lower compared to first-generation biodiesel, an order of magnitude lower than the third-generation (microalgae), since the latter is not a fully-fledged technology yet. A threefold reduction in environmental impacts was observed compared to petrodiesel. Environmental hotspots include energy inputs to drive the process, followed by methanol (CH3OH) and potassium methoxide (CH3KO) consumption. Glycerol (C3H8O3) and potassium sulfate (K2SO4), both process co-products, resulted to avoided environmental burdens. Furthermore, used-cooking-oil valorisation for biodiesel production can address water pollution concerns from its disposal to the sewage system. The total distance and means of transport were found to influence the system’s environmental sustainability. Strong incentives for used-cooking-oil recycling, widespread collection systems, and biodiesel supply chain optimization are still pending in Greece, Europe, and further afield. Given its overall low environmental footprint and capability to be produced at commercial scales, the second-generation biodiesel, which currently represents 15% of the biodiesel market in Greece, could act as a stepping-stone in decarbonizing Europe’s transport sector and improving supply and energy security.
Keywords: Circular economy; Life cycle inventory/assessment (LCI/LCA); Used/waste cooking oil (UCO/WCO); SimaPro; Waste management and valorisation; Water pollution (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120302081
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:153:y:2020:i:c:p:588-600
DOI: 10.1016/j.renene.2020.02.022
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().