EconPapers    
Economics at your fingertips  
 

Modeling a novel combined solid oxide electrolysis cell (SOEC) - Biomass gasification renewable methanol production system

Shahid Ali, Kim Sørensen and Mads P. Nielsen

Renewable Energy, 2020, vol. 154, issue C, 1025-1034

Abstract: Chemical energy storage in the form of hydrogen is playing an important role in the synthesis of alternative energy carriers such as Synthetic Natural Gas (SNG), Methanol and Dimethyl ether (DME) supplementing with a carbon source. The only renewable carbon source is biomass, which is a limited resource. However, the addition of hydrogen could potentially extend the existing biomass resources. This paper describes the modeling of a novel combined Solid Oxide Electrolysis Cell (SOEC) and oxygen blown biomass gasification system using Aspen Plus. One of the advantages of using such a combined system is the use of oxygen for gasification and reforming. The comparison of reforming technologies showed that an autothermal reformer (ATR) could be an advantage since oxygen is already available from the electrolysis stack and the ATR produced syngas has a higher CO/CO2 ratio, which increases the methanol synthesis’s reaction rate. ATR requires much less energy ∼13 MW for almost complete methane conversion compared to ∼35 MW for Steam Reforming (SR). The advantage of using inter-cooled compression upstream or downstream for such a combined process has been explained. A methanol thermal conversion efficiency of 72.08% can be achieved for gasification and SOEC combined system compared to 55.7% for an only gasifier system.

Keywords: Biomass gasification; Electrolysis; Methanol; Process modeling; Aspen plus; Energy storage (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119319809
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:154:y:2020:i:c:p:1025-1034

DOI: 10.1016/j.renene.2019.12.108

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:154:y:2020:i:c:p:1025-1034