EconPapers    
Economics at your fingertips  
 

Coupling sorption and compression chillers in hybrid cascade layout for efficient exploitation of renewables: Sizing, design and optimization

Valeria Palomba, Giuseppe E. Dino and Andrea Frazzica

Renewable Energy, 2020, vol. 154, issue C, 11-28

Abstract: The efficient utilization of renewable energy sources should rely on the exploitation of a mix of thermal and electric energy rather than relying on a single energy source. One way to apply this shared generation concept to space heating/cooling and refrigeration in both residential and industrial sector is through hybrid sorption-compression chillers. However, the experience on these systems is still limited and therefore their design and optimization require some efforts. Starting from the experimental experience on the testing of different hybrid cascade chillers, and integrating the measurement with a dynamic model, some considerations on the sizing, design and optimization of hybrid thermal-electric chillers are reported. In particular, design conditions of pre-commercial or commercial systems are evaluated and optimization at different levels is proposed, i.e. on the core components (through the proper design of relative capacities of the units in the cascade and through proper selection of the refrigerant), on the auxiliaries, to reduce their electricity consumption, and on the overall management of the hybrid chiller. Results demonstrated that the higher is the operating temperature lift between evaporator and condenser the higher are the achievable energy savings of a cascade chiller.

Keywords: Sorption; Cooling; Hybrid; Cascade; Design (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120303086
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:154:y:2020:i:c:p:11-28

DOI: 10.1016/j.renene.2020.02.113

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:154:y:2020:i:c:p:11-28