Identifying early defects of wind turbine based on SCADA data and dynamical network marker
Fang Ruiming,
Wu Minling,
Guo Xinhua,
Shang Rongyan and
Shao Pengfei
Renewable Energy, 2020, vol. 154, issue C, 625-635
Abstract:
Defects Identification is of great significance to prevent wind turbines (WTs) accidents and improve its operation reliability, and it keeps challenging due to the complex relationship between internal faults and external observed data. A new method to identify early defects of WTs is presented based on Dynamical Network Marker (DNM) by adopting only the data of supervisory control and data acquisition (SCADA). In the presented method, WT is mapped into a multi-node complex network according to the corresponding relationship between the internal structure topology of WT and the monitoring variables of its SCADA system. Then the dominant nodes in the network under different states are screened out through the correlation and cross-correlation analysis of de-nosed SCADA monitoring data series and prediction data series to form a key subnetwork, and the dynamical network marker (DNM) is constructed as warning signal of defects of WT. The proposed method is tested with the SCADA data of a WT with known faults. The results illustrate that the proposed method can not only give an early warning signal when WT under defect state but also further determine the defect location. Moreever, the proposed method only needs the SCADA monitoring data of WT itself, which is convenient and easy to be popularized.
Keywords: Wind turbine; SCADA data; Dynamical network marker; Early defect identifying (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812030358X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:154:y:2020:i:c:p:625-635
DOI: 10.1016/j.renene.2020.03.036
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().