EconPapers    
Economics at your fingertips  
 

Optimization of orange peel waste ensiling for sustainable anaerobic digestion

Paolo S. Calabrò, Filippo Fazzino, Rossana Sidari and Demetrio Antonio Zema

Renewable Energy, 2020, vol. 154, issue C, 849-862

Abstract: Today, orange peel waste (OPW) is mainly used as cattle feed, often after ensiling. This storage phase can increase the efficiency of anaerobic digestion, since it allows both a better management of possible co-digestion and a reduction in the high content of essential oils (mainly composed of d-Limonene a well-known inhibitor of anaerobic digestion). The effects of ensiling on the methane potential of OPW have been little studied, particularly its microbiological profile. This study has simulated, at laboratory scale, OPW ensiling under three different conditions. Ensiled OPW samples were then either directly anaeobically digested or subjected to simple pretreatments aiming at the further removal of d-Limonene. The microbiota evolution during ensiling and the species of microorganisms present during the aforementioned process were also identified. After ensiling, up to over 70% of the initial d-Limonene content of OPW was removed and biomethane yield was preserved up to about 90%.

Keywords: Anaerobic digestion; d-limonene; Ensiling; Microbiota; Molecular identification; Orange peel waste (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120303724
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:154:y:2020:i:c:p:849-862

DOI: 10.1016/j.renene.2020.03.047

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:154:y:2020:i:c:p:849-862