High-performance glucose fuel cell with bimetallic Ni–Co composite anchored on reduced graphene oxide as anode catalyst
Muhammad Irfan,
Xianhua Liu,
Shengling Li,
Izhar Ullah Khan,
Yang Li,
Jiao Wang,
Xin Wang,
Xiwen Du,
Guangyi Wang and
Pingping Zhang
Renewable Energy, 2020, vol. 155, issue C, 1118-1126
Abstract:
Glucose is abundant, renewable and have high energy content. Direct glucose fuel cells (DGAFCs) which can directly use glucose as fuel are promising next-generation energy devices. However, the poor performance of anode catalysts largely limits the practical use of current DGAFCs. In this work, the Ni–Co-rGO composite was synthesized by a facile one-pot water bath method and applied as anode catalyst in a DGAFC. Notably, the Ni–Co-rGO significantly improved the catalytic activity of glucose oxidation compared to Ni-rGO, Co-rGO, and conventional activated carbon electrodes. The DGAFC equipped with a Ni–Co-rGO anode achieved 28.807 W/m2 power density at room temperature, which is twice higher than the fuel cell with a bare activated carbon electrode. The excellent electrochemical performances of Ni–Co-rGO may be attributed to the synergistic effect of Ni, Co, and reduced graphene oxide. The rGO can not only function as a dispersant to prevent the agglomeration of the Ni–Co catalyst, but also facilitate the electron transfer from active sites to the current collector. Furthermore, the physicochemical properties of the composite catalyst was characterized by using XRD, XPS, SEM, TEM, and EDS techniques.
Keywords: Electrocatalyst; Ni–Co-rGO; Glucose; Electrochemical activity; Power density (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120305449
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:155:y:2020:i:c:p:1118-1126
DOI: 10.1016/j.renene.2020.04.016
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).