EconPapers    
Economics at your fingertips  
 

The short-term interval prediction of wind power using the deep learning model with gradient descend optimization

Chaoshun Li, Geng Tang, Xiaoming Xue, Xinbiao Chen, Ruoheng Wang and Chu Zhang

Renewable Energy, 2020, vol. 155, issue C, 197-211

Abstract: The application of wind power interval prediction for power systems attempts to give more comprehensive support to dispatchers and operators of the grid. Lower upper bound estimation (LUBE) method is widely applied in interval prediction. However, the existing LUBE approaches are trained by meta-heuristic optimization, which is either time-consuming or show poor effect when the LUBE model is complex. In this paper, a deep interval prediction method is designed in the framework of LUBE and an efficient gradient descend (GD) training approach is proposed to train the LUBE model. In this method, the long short-term memory is selected as a representative to show the modelling approach. The architecture of the proposed model consists of three parts, namely the long short-term memory module, the fully connected layers and the rank ordered module. Two loss functions are specially designed for implementing the GD training method based on the root mean square back propagation algorithm. To verify the performance of the proposed model, conventional LUBE models, as well as popular statistic interval prediction models are compared in numerical experiments. The results show that the proposed approach performs best in terms of effectiveness and efficiency with average 45% promotion in quality of prediction interval and 66% reduction of time consumptions compared to traditional LUBE models.

Keywords: Wind power interval prediction; Lower upper bound estimation; Long short-term memory; Gradient descend; Root mean square back propagation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120304304
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:155:y:2020:i:c:p:197-211

DOI: 10.1016/j.renene.2020.03.098

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:197-211