Experimental study of bathymetry generated turbulence on tidal turbine behaviour
Benoît Gaurier,
Maria Ikhennicheu,
Grégory Germain and
Philippe Druault
Renewable Energy, 2020, vol. 156, issue C, 1158-1170
Abstract:
In high flow velocity areas like those suitable for tidal applications, turbulence intensity is high and flow variations may have a major impact on tidal turbine behaviour. A three-bladed horizontal axis turbine model (scale 1:20) is positioned in the wake of a square wall-mounted cylinder, representative of specific in situ bathymetric variation, to experimentally study these effects in a current flume tank. Local and global loads are acquired in synchronization with velocity measurements to study the turbine response to flow fluctuations. Velocity measurements need to be obtained close to the turbine, contrary to what is commonly considered, to properly correlate velocity and loads fluctuations. Results show that the loads phase average and their dispersion evolve according to the sheared velocity profile. We conclude that the turbine load fluctuations directly respond to the low frequency velocity fluctuations and are dominated by the turbulent structures shed from the cylinder. It is then possible to compare the effects of large coherent turbulent structures on the turbine behaviour to cases with more classical free stream turbulence commonly studied. These results provide a substantive database in high Reynolds number flows for further fatigue analysis or recommendations for turbine positioning in such flows.
Keywords: Turbulence; Experimental trials; Wall-mounted cylinder; PIV; LDV; Horizontal axis tidal turbine (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120306340
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:156:y:2020:i:c:p:1158-1170
DOI: 10.1016/j.renene.2020.04.102
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().