A general optimal operating strategy for commercial membrane distillation facilities
Juan D. Gil,
Paulo R.C. Mendes,
E. Camponogara,
Lidia Roca,
J.D. Álvarez and
Julio E. Normey-Rico
Renewable Energy, 2020, vol. 156, issue C, 220-234
Abstract:
The high thermal energy consumption is one of the main drawbacks hampering the commercial implementation of Membrane Distillation (MD) technology. The development of adequate operating strategies can help to reduce these energy requirements. Accordingly, this paper focuses on the optimal management of the array of MD modules composing a commercial-scale MD plant, trying to reduce their thermal energy consumption while ensuring a given water need. For this aim, the array of MD modules is modelled as a Mixed Integer Programming (MIP) system to consider that some modules can be turned on/off depending on the operation specifications. An algorithm based on the Generalized Bender Decomposition (GBD) is then developed for the efficient solution of the problem. This algorithm is incorporated in a Model Predictive Control (MPC) strategy allowing to manage the plant in real time. The effectiveness of the proposed strategy is verified using a practical example. The obtained results are compared with a manual and a previous strategy presented in literature, showing that for a sunny day, around the 65 and 55% of the thermal energy consumed by these methodologies can be saved, which means important thermal energy savings that can be relevant for the industrial implementation of MD technology.
Keywords: Thermal efficiency; Desalination; Solar energy; Benders decomposition; Model predictive control (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120306066
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:156:y:2020:i:c:p:220-234
DOI: 10.1016/j.renene.2020.04.074
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().