EconPapers    
Economics at your fingertips  
 

A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow

Maciej Śliz and Małgorzata Wilk

Renewable Energy, 2020, vol. 156, issue C, 942-950

Abstract: In this study, the effects of temperature, residence time and biomass to water ratio on hydrothermal carbonization of Virginia mallow were conducted. The main goal of this research was to investigate hydrochars derived from Virginia mallow in order to assess their fuel properties. Proximate, ultimate and high heating value analyses were used to establish the chemical energy content of raw biomass and hydrochars. TGA, SEM, BET and FTIR were performed to discuss the combustion characteristics and changes in the surface of the material. Temperature was found to be the main factor influencing the conversion of Virginia mallow during the HTC process. It was confirmed by the properties of hydrochar derived at 220 °C for 5 min which was as carbonaceous (51.8% carbon content) and reactive as that obtained at 200 °C for 60 min (52.5% carbon content). A sample pretreated at 200 °C for 90 min had the highest fixed carbon value (16.29%) when compared to raw feedstock (5.63%). In the resulting reduction of mass found in the hydrochar, an increase in the energy densification ratio as well as better combustion stability were also observed. Detailed analysis of the Results confirmed that the HTC is a promising method for producing energy-dense solid biofuel.

Keywords: Hydrothermal carbonization; HTC; Virginia mallow; Sida hermaphrodita; TGA; FTIR (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120306625
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:156:y:2020:i:c:p:942-950

DOI: 10.1016/j.renene.2020.04.124

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:156:y:2020:i:c:p:942-950