Experimental evaluation of coaxial horizontal axis hydrokinetic composite turbine system
A. Abutunis,
G. Taylor,
M. Fal and
K. Chandrashekhara
Renewable Energy, 2020, vol. 157, issue C, 232-245
Abstract:
Hydrokinetic energy conversion systems are emerging as a viable solution for harnessing kinetic energy. However, the typical deployment location is highly space-constrained due to both the nature and the other uses of the river. Therefore, a modified conversion device to overcome these constraints is necessary. The research objective of this work was to evaluate and enhance the performance of multiple coaxial horizontal axis hydrokinetic turbines (HAHkTs) mounted on a single shaft. The hydrodynamic performance of different configurations of single- and multi- HAHkTs with blades made of carbon fiber polymer composites was evaluated in a water tunnel. Increasing the number of rotors of the turbine system from one to two enhanced efficiency by approximately 75% and lowered the operational tip speed ratio. The third rotor also enhanced the efficiency, but the improvement was less (about 32%) due to the slower flow passing this rotor. A duct reducer was also incorporated, and its effect was studied. Finally, the wake behavior and its effect on the multi-turbine system operation were examined by using a particle image velocimetry system. From the structure aspect, composite materials have the appropriate properties that suit the water turbine blades. The composite blades were manufactured using the out-of-autoclave process.
Keywords: Multi-turbine system; Composite blades; Duct reducer; Particle image velocimetry; Stall delay; Wake structure (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120307084
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:157:y:2020:i:c:p:232-245
DOI: 10.1016/j.renene.2020.05.010
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().