A novel bubble-driven internal mixer for improving productivities of algal biomass and biodiesel in a bubble-column photobioreactor under natural sunlight
Venkateswara R. Naira,
Debasish Das and
Soumen K. Maiti
Renewable Energy, 2020, vol. 157, issue C, 605-615
Abstract:
The poor biomass titer and biodiesel productivity under natural sunlight are the major challenges for commercialization of algae-biodiesel. Apart from engineering the nutritional medium and CO2 input strategies, the photobioreactor (PBR) design needs high attention to increase light utilization efficiency. Hence, a novel bubble-driven internal mixer was designed for providing frequent light/dark fluctuation which can improve light utilization efficiency and installed in a bubble-column PBR (BC-PBR) to improve productivities of biomass and biodiesel from Chlorella sp. Without any extra energy requirement (via aeration), in 10 L scale BC-PBR with mixer under simulated sunlight, the productivities of biomass and biodiesel were increased by 13% and 62%, respectively, compared to without mixer. Under natural sunlight, the improvement of biomass productivity was 33% with mixer arrangement and final biomass of 8.6 g L−1 was achieved. Further to improve biodiesel productivity and quality under natural sunlight, the lipid induction was started right after the algae growth of 4.2 g L−1 (at the time of highest biomass productivity, 1.4 g L−1 day−1). Consequently, a very highest biodiesel productivity of 753 mg L−1 day−1 (induction-phase) was achieved. To the best of authors knowledge, this is the first study to report bubble-driven mixer in microalgae cultivation technology.
Keywords: Bubble-driven internal mixer; Productivity; Microalgae; Outdoor cultivation; Biomass; Biodiesel (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120307813
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:157:y:2020:i:c:p:605-615
DOI: 10.1016/j.renene.2020.05.079
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().