Novel strategies for glucose production from biomass using heteropoly acid catalyst
Abhishek Nayak,
Indra Neel Pulidindi and
Chinta Sankar Rao
Renewable Energy, 2020, vol. 159, issue C, 215-220
Abstract:
Bioethanol and direct glucose fuel cells pledged clean energy to the world. Cellulose depolymerization for glucose production has been a successful approach in bioethanol production. Heteropoly acids (HPAs) are strong Brønsted solid acid catalysts for biomass hydrolysis. Keggin type HPAs, namely, Silicotungstic acid (HSiW), Phosphotungstic acid (HPW), and Phosphomolybdic acid (HPMo), were used for the hydrolysis of lignocellulosic biomass to glucose. Five different biomass feedstocks, namely, miscanthus, sugarcane leaves, switchgrass, sunflower seeds, and bamboo leaves, were examined for the feasibility of total reducing sugar (TRS) yield through the composition analysis and catalytic biomass hydrolysis. Sunflower seeds contained the maximum holocellulose with 90.6%, and switchgrass contained the least i.e., 77.63%. Among the five biomass tested, switchgrass resulted in the highest TRS (5.77 wt/dry wt. %) with HPMo catalyst at a catalyst to biomass ratio of 30:100 (wt./wt. %), a reaction temperature of 120 °C for 3 h. The reaction parameters for depolymerization were optimized for all three HPAs, and the optimized conditions were 3 h and 120 °C. HPMo showed maximum TRS yield (5.77 wt/dry wt.%) among the three HPAs at 30:100 catalyst to biomass ratio. However, a catalyst to biomass ratio of 20:100 (wt./wt.%) was economical (5.25 wt/dry wt.%) for commercial application.
Keywords: Heteropoly acid; Catalyst; Biomass; Sugar production; Switch grass; Cellulose hydrolysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120308338
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:159:y:2020:i:c:p:215-220
DOI: 10.1016/j.renene.2020.05.129
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().