Influence of electrochemical advanced oxidation on the long-term operation of an Upflow Anaerobic Sludge Blanket (UASB) reactor treating 4-chlorophenol containing wastewater
Jonas De Coster,
Jia Liu,
Rob Van den Broeck,
Barbara Rossi,
Raf Dewil and
Lise Appels
Renewable Energy, 2020, vol. 159, issue C, 683-692
Abstract:
Upflow anaerobic sludge blanket (UASB) systems are of specific interest for the treatment of high organic wastewater since they offer the opportunity to recover energy in the form of methane (biogas). The technology is highly suitable for the degradation of biodegradable organics, but its efficiency can be significantly hampered by the presence of toxic pollutants in the water. In this study, the use of electrochemical advanced oxidation (eAOP) coupled to a lab-scale UASB reactor for the degradation of 4-chlorophenol (4-CP) in wastewater was investigated. The eAOP treatment consisted of the electrochemical production of active chlorine at a Ti/RuO2–IrO2 anode with a fixed current density of 25 mA/cm2 in the recycle of the UASB reactor. It was noticed that the total COD removal efficiency decreased from 75.8% when no 4-CP was present in the wastewater to 25.6% and 13.6% after the addition of 100 ppm and 50 ppm 4-CP, respectively. Furthermore, elevated levels of volatile fatty acids and ORP were observed in the effluent of the reactor, indicating process failure. It was postulated that the decrease in COD removal efficiency was due to the release of high amounts of hypochlorite, causing an oxidative environment in the anaerobic reactor. This hypochlorite may have reacted with several components such as ammonia to form other toxic components (e.g., chloramine).
Keywords: Anaerobic wastewater treatment; UASB; Chlorophenol; Inhibition; Biogas (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120305693
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:159:y:2020:i:c:p:683-692
DOI: 10.1016/j.renene.2020.04.037
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().