Stochastic assessment of aerodynamics within offshore wind farms based on machine-learning
M. Richmond,
A. Sobey,
R. Pandit and
A. Kolios
Renewable Energy, 2020, vol. 161, issue C, 650-661
Abstract:
Wind turbine flow field prediction is difficult as it requires computationally expensive computational fluid dynamics (CFD) models. The contribution of this paper is to propose and develop a method for stochastic analysis of an offshore wind farm using CFD and a non-intrusive stochastic expansion. The approach is developed through testing a range of machine-learning methods, evaluating dataset requirements and comparing the accuracy against site measurement data. The approach used is detailed and the results are compared with real measurements obtained from the existing wind farm to quantify the accuracy of the predictions. An existing offshore wind farm is modelled using a steady-state CFD solver at several deterministic input ranges and an approximation model is trained on the CFD results. The approximation models compared are Artificial Neural Networks, Gaussian Process, Radial Basis Function, Random Forest and Support Vector Regression. RBF achieves a mean absolute error relative to the CFD model of only 0.54% and the error of the SVR predictions relative to the real data, with scatter, was 12%, compared to 16% from Jensen. This approach has the potential to be used in more complex situations where an existing analytical method is either insufficient or unable to make a good prediction.
Keywords: Artificial intelligence; Computational fluid dynamics; Wind turbines; Power prediction (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120311599
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:161:y:2020:i:c:p:650-661
DOI: 10.1016/j.renene.2020.07.083
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().