A novel method for fast sky conditions identification from global solar radiation measurements
Siwei Lou,
Yu Huang,
Danny H.W. Li,
Dawei Xia,
Xiaoqing Zhou and
Yang Zhao
Renewable Energy, 2020, vol. 161, issue C, 77-90
Abstract:
Sky conditions, and the corresponding luminance and radiance distribution patterns are essential to daylighting, energy and thermal environmental studies. The CIE Standard Skies define the overcast, partly cloudy, and clear sky conditions intuitively by rigorous luminance distributions, which are, however, usually determined by sophisticated and uncommon measurements (e.g. radiation in multiple vertical directions). This study proposes a simple approach to identifying the hourly sky conditions from the global horizontal irradiance (EHG) that is most widely accessible in weather stations with basic radiation measurement facilities. The sophisticated measurements are, therefore, avoided for simple applications. The partly cloudy sky, especially, is identified by the notable disparity of its EHG measurement from the theoretical cloudless condition. The proposed approach interprets the ISO/CIE Standard Sky conditions and their diffuse luminance and radiance distributions successfully. From the datasets at two sites with different climates, the approach correctly identifies 7% more sky conditions than a previous work when the direct beam and diffuse radiation measurements were not accessible. The model can thus be essential to solar energy studies for places with ground-based solar radiation measurements only.
Keywords: Anisotropic sky; Luminance/radiance distribution; Sky conditions; Sky identification (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120310314
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:161:y:2020:i:c:p:77-90
DOI: 10.1016/j.renene.2020.06.114
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().