EconPapers    
Economics at your fingertips  
 

An analytical method to evaluate the impact of vertical part of an earth-air heat exchanger on the whole system

Landry Jean Pierre Gomat, Smaël Magloire Elombo Motoula and M’Passi-Mabiala, Bernard

Renewable Energy, 2020, vol. 162, issue C, 1005-1016

Abstract: This paper presents a simplified analytical model within numerical results to determine the thermal balance of Earth-Air Heat Exchanger (EAHE). The EAHE is a device which uses the principle of soil thermal inertia used for ventilation in buildings. It has three sections: a vertical section at the entrance, an horizontal section in the area of soil thermal inertia and a vertical section at the exit, also considered as area in soil thermal inertia. The assessment for the heat algebrical gain at the vertical section of air entrance in the EAHE is established. In this study, the initial conditions of the problem are obtained and the temperature equation specified model is solved analytically, by considering that the vertical part of an EAHE or a vertical EAHE is under periodic fluctuations in both ambient air temperature and soil temperature. The model can predict the air temperature variation along vertical and horizontal section of the tube for any hour of the day and can be used for a vertical EAHE. It can also determine the daily or annualy mean and amplitude of the total cooling or heating effect of the tube. Numerical results are graphically presented, discussed and compared to experimental datas.

Keywords: Earth-air heat exchanger; Soil’s thermal inertia; Analytical solution; Initial conditions (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812031329X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:162:y:2020:i:c:p:1005-1016

DOI: 10.1016/j.renene.2020.08.084

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:1005-1016