Added-value of ensemble prediction system on the quality of solar irradiance probabilistic forecasts
Josselin Le Gal La Salle,
Jordi Badosa,
Mathieu David,
Pierre Pinson and
Philippe Lauret
Renewable Energy, 2020, vol. 162, issue C, 1321-1339
Abstract:
Accurate solar forecasts is one of the most effective solution to enhance grid operations. As the solar resource is intrinsically uncertain, a growing interest for solar probabilistic forecasts is observed in the solar research community. In this work, we compare two approaches for the generation of day-ahead solar irradiance probabilistic forecasts. The first class of models termed as deterministic-based models generates probabilistic forecasts from a deterministic value of the irradiance predicted by a Numerical Weather Prediction (NWP) model. The second type of models denoted by ensemble-based models issues probabilistic forecasts through the calibration of an Ensemble Prediction System (EPS) or from information (such as mean and variance) derived from the ensemble. The verification of the probabilistic forecasts is made using a sound framework. A numerical score, the Continuous Ranked Probability Score (CRPS), is used to assess the overall performance of the different models. The decomposition of the CRPS into reliability and resolution provides a further detailed insight into the quality of the probabilistic forecasts. In addition, a new diagnostic tool which evaluates the contribution of the statistical moments of the forecast distributions to the CRPS is proposed. This tool denoted by MC-CRPS allows identifying the characteristics of an ensemble that have an impact on the quality of the probabilistic forecasts. The assessment of the different models is done on several sites experiencing very different climatic conditions. Results show a general superior performance of ensemble-based models as the gain in forecast quality measured by the CRPS ranges from 4% to 16% depending on the site.
Keywords: Day-ahead solar irradiance probabilistic forecast; Ensemble prediction system; Non parametric methods; Ensemble calibration; CRPS (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120311186
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:162:y:2020:i:c:p:1321-1339
DOI: 10.1016/j.renene.2020.07.042
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().