Experimental investigation of a direct absorption solar collector using ultra stable gold plasmonic nanofluid under real outdoor conditions
Sanjay Kumar,
Vipin Sharma,
Manas R. Samantaray and
Nikhil Chander
Renewable Energy, 2020, vol. 162, issue C, 1958-1969
Abstract:
Gold nanoparticles (Au-NPs) seeded plasmonic nanofluids (PNFs) have shown promising results in overall performance enhancement of direct absorption solar collector (DASC) due to localized surface plasmon resonance (LSPR) effect. For the work presented here, Au-NPs were synthesized by the wet chemical method and were utilized to prepare plasmonic nanofluid. The surface plasmon resonance peak of Au-NPs was observed at 531 nm using UV–Visible spectrophotometer study. The testing for performance enhancement of gold plasmonic nanofluid (GPNF) laden DASC so far is limited to laboratory scale setups or simulation studies. Considering the dearth of outdoor experimental studies, an attempt has been made in the present study to evaluate the thermal performance of Au-NPs (∼40 nm) based nanofluid (∼0.0002 wt%) in full scale DASC. The experiments have been performed at different flow rates under clear sky outdoor conditions in winter season at Jalandhar, India. The maximum collector outlet temperature was measured to be 55 °C with GPNF which is about 7 °C higher than the maximum outlet temperature obtained with de-ionized water as working fluid. Thermal efficiency with GPNF is about 33% higher than de-ionized water at the optimal flow rate of 0.030 kg/s.
Keywords: Direct absorption; Gold nanoparticle; Performance enhancement; Outdoor testing; India (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120315846
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:162:y:2020:i:c:p:1958-1969
DOI: 10.1016/j.renene.2020.10.017
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().