Rotational sampling of waves by tidal turbine blades
S. Draycott,
J. Steynor,
A. Nambiar,
B. Sellar and
V. Venugopal
Renewable Energy, 2020, vol. 162, issue C, 2197-2209
Abstract:
The presence of waves exposes tidal stream turbines to large and cyclic hydrodynamic loads which significantly influence the design requirements for tidal turbine blades. Here we describe a loading phenomenon not previously considered in literature caused as blades rotationally sample an oscillating and vertically decaying wave-induced velocity field. Although implicitly incorporated into numerical models, the dominant causes and relative influence have not previously been considered.In this article this effect is described through theoretical analysis and validated through scaled experiments; including irregular waves at angles to the rotor and current field. The associated loads are found to be strongly correlated to the wavenumber. The nature of the rotational-sampling-effect is confirmed through analysis of the experimental results, where characteristic sidebands are effectively predicted in the blade root bending moment spectra. It is estimated to account for between 8% and 16% of the fatigue damage and between 7% and 13% of the peak root bending moment for the conditions tested. A key finding is that two bilaterally-symmetrical oblique wave conditions do not produce equivalent loading patterns: one produces higher frequency oscillations. Additionally, it is found that the frequency of these loads reduces linearly with rotational speed; highlighting another consideration for tidal stream turbine operation.
Keywords: Tidal Stream turbine; Irregular wave loads; Blade fatigue; Rotational sampling; Oblique waves; Sidebands (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120316049
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:162:y:2020:i:c:p:2197-2209
DOI: 10.1016/j.renene.2020.10.037
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().