EconPapers    
Economics at your fingertips  
 

Numerical and experimental investigation of solar air collector with internal swirling flow

Jianjun Hu, Meng Guo, Jinyong Guo, Guangqiu Zhang and Yuwen Zhang

Renewable Energy, 2020, vol. 162, issue C, 2259-2271

Abstract: Swirling flow was introduced into the solar air collector (SAC) with the purpose of thermal performance improvement. Numerical simulation was carried out to analyze the parameters that affect the thermal performance. The internal flow and heat transfer characteristics were compared between the basic and swirling-flow collectors in order to explain their difference in performance. The sensitivity study shows that the parameters of the swirling type, the swirling state and the swirling intensity all have significant influence on thermal performance of SAC. The numerical results show that the active swirling flow can yield better improvement than passive swirling flow. The maximum thermal efficiency growth rate (TEGR) of active swirling flow and passive swirling flow are 23.83% and 16.03%, respectively, compared with the basic model in the calculation. An experimental model was built to verify the effectiveness of swirling flow in thermal performance enhancement of SAC. The TEGR can be increased by up to 13.24% under small flow rate in the experiment. However, the improvement is not significant when the flow state is turbulent and the Reynolds number is high. This paper provides a new idea for the performance improvement of flat-plate solar air collectors.

Keywords: Swirling flow; Solar air collector; Numerical simulation; Experimental verification; Performance optimization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120316141
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:162:y:2020:i:c:p:2259-2271

DOI: 10.1016/j.renene.2020.10.048

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2259-2271