EconPapers    
Economics at your fingertips  
 

Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling

Xinyue Han, Xiaobo Zhao and Xiaobin Chen

Renewable Energy, 2020, vol. 162, issue C, 55-70

Abstract: This paper proposes a concentrating photovoltaic/thermal (CPV/T) system which combines the advantages of Ag/CoSO4-propylene glycol (PG) nanofluid based spectral beam splitter and heat pipe cooling technologies to enhance the solar energy conversion efficiency. A dynamical energy balance model for the designed CPV/T system to describe its electrical and thermal behavior is presented which was documented by few literatures. To provide theoretical guidance for further prototype design, the effects of concentration ratio, filter mass flow rate, water mass in both the water tank and the thermal collector, ambient temperature and wind speed on the all-day performance of the designed CPV/T system are discussed. Moreover, this work firstly studies the role of heat pipe cooling on nanofluid based spectral beam splitting system performance. Results show that when the concentration ratio varies from 1 to 8 suns, the average difference in system average total efficiency of heat pipe cooling mode and no heat pipe mode is 10.4%. Under the solar irradiance in a typical day with concentration ratio of 5 suns, the instantaneous total efficiency of the system reaches a maximum value of 73.20% at 17: 00 with 7.55% coming from electricity and its average total efficiency for the whole day is 53.66%.

Keywords: Concentrating photovoltaic/thermal system; Optical filter; Nanoparticles; Heat pipe; Dynamical model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120312076
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:162:y:2020:i:c:p:55-70

DOI: 10.1016/j.renene.2020.07.131

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:55-70