PV inverter with decoupled active and reactive power control to mitigate grid faults
Muhammad Talha,
S.R.S. Raihan and
N Abd Rahim
Renewable Energy, 2020, vol. 162, issue C, 877-892
Abstract:
This paper proposes a grid-tied PV inverter installed at the low voltage side of a distribution grid. The architecture considers the operation of a grid-tied inverter and its robustness against the grid faults. Unlike previously proposed low-voltage-ride-through (LVRT) operation, the proposed control provides maximum-power-point-tracking (MPPT) in both normal and low-voltage fault conditions. The control strategy prevents the inverter shut-down by maintaining the DC-link. The inverter also supports the grid by reactive power injection during the voltage sags. The paper presents a prediction model of a two-stage voltage-source-inverter. The proposed predictive control can generate the appropriate references for both regular and LVRT modes based on the inverter’s specification and the regulatory grid codes. The salient features of the proposed controller are: (1) decoupled power control in regular operation, (2) low-voltage-ride-through operation with reactive power support, (3) No DC-link fluctuation, and (4) MPPT in every mode. The inverter control is developed by formulating a cost function based on the prediction model of the inverter. A cost function minimization-based control eliminates the conventional cascaded-loop control, thus simplifying the controller implementation. The proposed model-predictive-control (MPC) algorithm is validated with mathematical analysis and simulations of the PV inverter in both standard and faulty grid conditions.
Keywords: Grid-connected inverter; DC-bus stability; Decoupled power control; LVRT; Model predictive control (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120313112
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:162:y:2020:i:c:p:877-892
DOI: 10.1016/j.renene.2020.08.067
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().