A new combined heating and power system driven by biomass for total-site utility applications
Hamed Amiri,
Amir Farhang Sotoodeh and
Majid Amidpour
Renewable Energy, 2021, vol. 163, issue C, 1138-1152
Abstract:
Steam generation of the industrial steam networks through an internal process driven by a renewable energy can be extremely demanding. Conventionally, fossil fuels are used for this aim since a high-temperature heat source is needed to reliability drive a steam network. To address this demand and decrease environmental penalty associate with the conventional methods, an innovative and high-efficient biomass-driven cogeneration system is proposed for the real need of the utility systems by considering a suitable total-site heat recovery and distribution mechanism. The proposed cogeneration system consists of a biomass gasifier, a gas turbine cycle, a solid oxide fuel cell, and a steam network unit. In comparison with the previous cogeneration systems, the steam required for the gasification process in the gasifier is supplied by some portion of the steam generated at the last stage of the steam network unit. Also, natural gas is used as an auxiliary fuel to satisfy the surplus fuel required for the steam generation. A new methodology is introduced to use a biomass-driven cogeneration system as a primary steam generator of the steam network unit instead of using a conventional boiler or gas turbine with heat recovery steam generator. The proposed system produces additional heating load of 235.26 MW in comparison with the topping system (i.e., combined solid oxide fuel cell/gas turbine system). Integrating the steam network unit also increased the energy efficiency of the basic system from 20.05% to 54.35% and the net power from 47.55 MW to 72.3 MW. The proposed integrated system can be regarded as a promising futuristic layout for simultaneous steam and power generation of the petrochemical industries.
Keywords: Biomass; Cogeneration; Gasification; Gas turbine; SOFC; Steam network (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120314592
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:163:y:2021:i:c:p:1138-1152
DOI: 10.1016/j.renene.2020.09.039
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().