Biodiesel production via transesterification of canola oil in the presence of Na–K doped CaO derived from calcined eggshell
Maryam Khatibi,
Farhad Khorasheh and
Afsanehsadat Larimi
Renewable Energy, 2021, vol. 163, issue C, 1626-1636
Abstract:
CaO derived from calcined eggshell was doped with Na–K by wet impregnation method and the effect of different Na/K molar ratios was investigated on biodiesel production from canola oil. The catalysts were characterized by X-ray Powder Diffraction (XRD), Brunauer–Emmett–Teller (BET), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and Thermogravimetric (TGA) analyses. FAME yields were determined by Gas Chromatography-Mass Spectrometry (GC-MS). The Na–K/CaO catalyst with Na/K molar ratio of 1 showed the highest FAME yield of 97.6% at optimum reaction conditions. Structural investigation of materials revealed that FAME yield was proportional to the number of basic sites on the surface of catalyst. The optimum reaction conditions were found to be catalyst loading of 3 wt%, methanol to oil molar ratio of 9:1, reaction temperature of 50 °C, and reaction time of 3 h.
Keywords: Biodiesel; Na–K/CaO; Transesterification; Canola oil; Eggshell (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120316001
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:163:y:2021:i:c:p:1626-1636
DOI: 10.1016/j.renene.2020.10.039
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().