EconPapers    
Economics at your fingertips  
 

Theoretical insight into the hydrogenolysis mechanism of lignin dimer compounds based on experiments

Chen Zhu, Jing-Pei Cao, Xiao-Bo Feng, Xiao-Yan Zhao, Zhen Yang, Jun Li, Ming Zhao, Yun-Peng Zhao and Hong-Cun Bai

Renewable Energy, 2021, vol. 163, issue C, 1831-1837

Abstract: Deep insight of reaction mechanism in lignin model compounds is helpful to achieve the directed depolymerization of lignin or biomass to chemicals or fuels. In this study, the density functional theory (DFT) calculation was employed to investigate the cleavage mechanism of the C–O bonds in lignin dimers. Additionally, the intrinsic chemical reactivity of molecular in term of the Fukui function was applied to predict the most probable sites which react with hydrogen free radicals (H·). It was found that the O atoms in lignin dimers are the most reaction site involving H· because of the large f (0). By this method, the most rational path from a series of reaction paths was screen out. Apart from the Fukui function, the average local ionization energy (ALIE) was analyzed to prove the reliability of Fukui function. The kinetic analysis of the reaction path was performed to further understand the impact of temperature on the reaction rate constant (KTST). It is observed that benzyl phenyl ether (BPE) with higher KTST could be easily cleaved because of the relatively low energy barrier.

Keywords: Lignin model compounds; Density functional theory; Fukui function; Average local ionization energy; Kinetic (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120316608
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:163:y:2021:i:c:p:1831-1837

DOI: 10.1016/j.renene.2020.10.094

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1831-1837