A dynamic model for once-through direct steam generation in linear focus solar collectors
João Soares,
Armando C. Oliveira and
Loreto Valenzuela
Renewable Energy, 2021, vol. 163, issue C, 246-261
Abstract:
Direct Steam Generation in parabolic trough solar collectors is one of the most promising alternatives for replacing the use of thermal oil in solar power plants and process heat. The main advantages are: elimination of steam generator heat exchangers; use of a non-toxic fluid; operation with power cycle higher temperatures, therefore with higher efficiency. Nevertheless, modelling the two-phase flow heat transfer is a complex task, and there is a lack of modular simulation tools that can easily be replicable for different configurations. In this work, a quasi-dynamic model developed for once-through direct steam generation, using Ebsilon professional software is presented and its results are assessed against experimental results from a test campaign carried out at the DISS test facility. The modelling methodology consists in splitting the solar field into individual components for which modelling and performance are assessed at a detailed level. Quasi-dynamic simulations are feasible by the combination of dynamic components and a time-series, where calculations are carried out for each timestep. The model is highly versatile, both at the system configuration and simulation levels. The model performance was evaluated by comparing simulation and experimental results for different operation stages, i.e. start-up, cool-down, steady and transient solar radiation.
Keywords: Direct steam generation; Two-phase flow model; Parabolic trough; Dynamic model; DISS test Facility (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120313720
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:163:y:2021:i:c:p:246-261
DOI: 10.1016/j.renene.2020.08.127
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().