EconPapers    
Economics at your fingertips  
 

Application of enstrophy dissipation to analyze energy loss in a centrifugal pump as turbine

Tong Lin, Xiaojun Li, Zuchao Zhu, Jing Xie, Yi Li and Hui Yang

Renewable Energy, 2021, vol. 163, issue C, 41-55

Abstract: Pump as turbine (PAT) is a type of energy recovery equipment. However, the mechanism of performance degradation when it deviates from the design working condition is inadequately reported. Hence, the steady performance of a centrifugal PAT with a design specific speed (nsd=3.65ndQd∕Hd0.75) of 90 was simulated by ANSYS-CFX 18.0. The shear stress transport (SST) k-ω turbulence model was used to close the Reynolds-averaged Navier–Stokes (RANS) equations and the simulation results of performance were verified by comparing the experimental. To explore the energy loss mechanism of the PAT under different flow conditions, the energy loss of each part of PAT was calculated by the enstrophy dissipation method, which not only accurately calculate the energy loss but also diagnose where and how hydraulic loss occurs. Compared with the traditional pressure drop assessment method, the enstrophy dissipation method has higher prediction accuracy for the rotating domain, almost the same prediction accuracy in the static domain. The energy loss of the PAT mainly occurs in the cavity, volute and impeller. Hydraulic loss is dominated by fluctuating enstrophy dissipation power and wall enstrophy dissipation power. Adverse flow phenomena such as backflow and shock flow could evidently increase the volume and wall enstrophy dissipation rates. Therefore, the proposed method can be used intuitively to provide a reference for PAT performance optimization and actual operation regulation.

Keywords: Pump as turbine(PAT); Enstrophy dissipation rate; Energy loss; Flow characteristic; Internal flow (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120313549
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:163:y:2021:i:c:p:41-55

DOI: 10.1016/j.renene.2020.08.109

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:41-55