EconPapers    
Economics at your fingertips  
 

Sensitivity analysis of design parameters for erythritol melting in a horizontal shell and multi-finned tube system: Numerical investigation

R Anish., Mahmood Mastani Joybari, Saeid Seddegh, V. Mariappan, Fariborz Haghighat and Yanping Yuan

Renewable Energy, 2021, vol. 163, issue C, 423-436

Abstract: Latent heat storage systems using phase change materials (PCMs) store large amounts of thermal energy at a near-constant temperature in a compact space. However, PCMs possess relatively low thermal conductivity which prolongs their phase change process; consequently, their applications have been limited. To address this, a numerical investigation was conducted in this study on the heat transfer mechanism in a horizontal shell and multi-finned tube heat exchanger. Erythritol (melting point of 117 °C) was selected as the PCM and Therminol-55 was used as the heat transfer fluid. ANSYS Fluent v. 19.0 was used to numerically solve the governing equations. Once validated by comparing with experimental data, the developed numerical model was then used to investigate the effect of several design parameters regarding tubes and fins on the storage performance. It was found that number of tubes, fin height as well as rotation of fins and tubes significantly influence the melting process. Overall, the melting duration could be decreased by about 44% when the number of tubes increased from 5 to 9. Moreover, the melting time could be decreased by about 31% when the fin height increased from 6 to 15 mm.

Keywords: Shell and multi-finned tube heat exchanger; Phase change material; Natural convection; Liquid fraction; Heat transfer enhancement (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120313987
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:163:y:2021:i:c:p:423-436

DOI: 10.1016/j.renene.2020.08.153

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:423-436