Ab-initio molecular dynamics study on thermal property of NaCl–CaCl2 molten salt for high-temperature heat transfer and storage
Zhenzhou Rong,
Gechuanqi Pan,
Jianfeng Lu,
Shule Liu,
Jing Ding,
Weilong Wang and
Duu-Jong Lee
Renewable Energy, 2021, vol. 163, issue C, 579-588
Abstract:
NaCl–CaCl2 molten salt is considered as a promising high-temperature heat transfer and storage fluid for advanced nuclear power plants and concentrating solar power plants in the field of renewable energy utilization. However, the comprehensive physical properties and their microscopic mechanisms for the molten NaCl–CaCl2 are failed to be measured accurately due to the extremely measuring condition. In this work, the ab-initio molecular dynamics simulation is used to investigate its microstructures and thermophysical properties for entire operating temperatures. It reveals that ion clusters are formed in terms of three for face-sharing, two for edge-sharing, and one for corner-sharing Cl− ions between the coordination shells of two neighboring cations. The coordination numbers of Na+-Cl- and Ca2+-Cl- ion pairs decrease from 5.88 to 6.46 at 783 K to 5.33 and 6.02 at 1173 K respectively. Meanwhile, the reliable and meaningful values of densities, ion self-diffusion coefficients, viscosities, and thermal conductivities were evaluated from 783 to 1173 K. It suggests that the distances and interactions between ions pairs determine thermodynamic properties directly. The ab-initio molecular dynamics simulation is proved to be an effective way to obtain the essential data for the designs of heat transfer and thermal energy storage systems in practical applications.
Keywords: Ab-initio molecular dynamics; NaCl–CaCl2 molten salt; Microstructures; Thermophysical properties (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120313975
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:163:y:2021:i:c:p:579-588
DOI: 10.1016/j.renene.2020.08.152
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().