EconPapers    
Economics at your fingertips  
 

Inhomogeneous rear reflector induced hot-spot risk and power loss in building-integrated bifacial c-Si photovoltaic modules

Chungil Kim, Myeong Sang Jeong, Jaehwan Ko, MyeongGeun Ko, Min Gu Kang and Hyung-Jun Song

Renewable Energy, 2021, vol. 163, issue C, 825-835

Abstract: A building-integrated bifacial photovoltaic (BF-PV) module is a strong candidate for realizing zero-energy buildings because it can achieve high power output by collecting light from both the front and rear sides of the building. However, harvesting non-uniformly distributed rear incident light is a very challenge issue in BF-PV. In this study, we empirically investigated the effect of an inhomogeneous rear surface on the power and reliability of a BF-PV. The mini-module test showed that a non-uniform rear reflection triggers a current mismatch among cells, resulting in the overheating of cells above the low reflectance surface. In particular, a large difference in the reflectance inside the rear reflector installed close to the module increases a hot-spot risk. This risk can be reduced by minimizing the variation of the reflectance, as well as elongating the distance between the cell and the reflector. A theoretical calculation based on empirical results indicated that an inhomogeneous rear reflector results in power loss or a reliability issue in BF-PV modules. Hence, the rear surface of a BF-PV module should be carefully designed or considered in order to maximize its performance and reliability.

Keywords: Bifacial photovoltaic; Building-integrated photovoltaic; Rear surface reflection; Hotspot (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120314282
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:163:y:2021:i:c:p:825-835

DOI: 10.1016/j.renene.2020.09.020

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:825-835