EconPapers    
Economics at your fingertips  
 

Temperature- and heating rate-dependent pyrolysis mechanisms and emissions of Chinese medicine residues and numerical reconstruction and optimization of their non-linear dynamics

Zhiyun Chen, Huashan Chen, Xieyuan Wu, Junhui Zhang, Deniz Eren Evrendilek, Jingyong Liu, Guanjie Liang and Weixin Li

Renewable Energy, 2021, vol. 164, issue C, 1408-1423

Abstract: The study bases on the pyrolysis characteristic, kinetic, and thermodynamic parameters and evolved gas analysis to quantity Chinese medicine residues (CMR) and uses artificial neural network (ANN) to reconstruct and jointly optimize pyrolysis. The main weightlessness interval of CMR is between 150 and 600 °C including organic matter decomposition. Four model-free methods and one model-fitting method were provided to find function mechanisms and kinetic parameters show it existing kinetic compensation through pyrolysis. TG-FTIR finds the gases and functional groups included CO2, CO, H2O, CH4, CO, CC, and C–O. And the main pyrolytic products were detected included esters, phenols and acids et al. 9-octadecenoic acid (z)-, methyl ester as one of the high quality products was in the highest proportion about 53.75%. The temperature-, heating rate-, and their non-linear dynamics of the multiple pyrolysis response surfaces were reconstructed and jointly optimized using an artificial neural network algorithm. Finally, the study is helpful for Chinese medicine residues high-value utilization.

Keywords: Kinetic and thermodynamic parameters; Waste reduction; Chinese medicine residues; Neural networks; Joint optimization; Evolved gas dynamics (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812031661X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:164:y:2021:i:c:p:1408-1423

DOI: 10.1016/j.renene.2020.10.095

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1408-1423