Laboratory-scale additive content assessment for aluminum-silicate-based wood chip additivation
Christian Gollmer,
Isabel Höfer and
Martin Kaltschmitt
Renewable Energy, 2021, vol. 164, issue C, 1471-1484
Abstract:
This paper analyzes the aluminum-silicate-based additivation of wood chips with regard to the retention of the ash and particulate matter (PM) forming element potassium (K) in high-temperature stable ashes. In terms of additivation, two types of the aluminum-silicate-based additive kaolin are used. The wood-additive-samples are analyzed in detail with respect to the ash content, the recovery rate of the ash and PM forming element K, the crystalline phases of the high-temperature stable ashes and the achieved additivation efficiency by means of an experimental as well as a theoretical approach. Based on the obtained findings, a general suitability of wood chips for additivation can be derived. Thereby, assessing the additive content solely based on stoichiometric calculations considering the alkali element content in the biomass and applying generalized safety factors from the literature turned out to be not advisable during the present study. Instead, the presence of alkaline earth elements originating from the biomass and the actual additivation process need to be considered as well. Given the composition of the wood chips in the present study and the applied additivation process, advisable additive contents between 1.49 wt%a.r. and 3.53 wt%a.r. were determined based on theoretical calculations.
Keywords: Wood chip; Additivation; Kaolin; Additive content (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120317109
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:164:y:2021:i:c:p:1471-1484
DOI: 10.1016/j.renene.2020.10.135
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().