Shading fault detection in a grid-connected PV system using vertices principal component analysis
Lahcene Rouani,
Mohamed Faouzi Harkat,
Abdelmalek Kouadri and
Saad Mekhilef
Renewable Energy, 2021, vol. 164, issue C, 1527-1539
Abstract:
Partial shading severely impacts the performance of the photovoltaic (PV) system by causing power losses and creating hotspots across the shaded cells or modules. Proper detection of shading faults serves not only in harvesting the desired power from the PV system, which helps to make solar power a reliable renewable source, but also helps promote solar versus other fossil fuel electricity-generation options that prevent making climate change targets (e.g. 2015’s Paris Agreement) achievable. This work focuses primarily on detecting partial shading faults using the vertices principal component analysis (VPCA), a data-driven method that combines the simplicity of its linear model and the ability to consider the uncertainties of the different measurements of a PV system in an interval format. Data from a grid-connected monocrystalline PV array, installed on the rooftop of the Power Electronics and Renewable Energy Research Laboratory (PEARL), University of Malaya, Malaysia, have been used to train the VPCA model. To prove the effectiveness of this VPCA method, four partial shading patterns have been created. The obtained performance has, then, been tested against a regular PCA. In addition to its ability to acknowledge the uncertainty of a PV system, the VPCA method has shown an enhanced performance of detecting partial shading fault in comparison with the standard PCA. Also, included in the article is an extension of the contribution plot diagnosis-based method, of the Q-statistic, to the interval-valued case aiming to pinpoint the out-of-control variables.
Keywords: Photovoltaic system (PV); Partial shading; Fault detection; Fault diagnosis; Principal component analysis (PCA); Interval-valued PCA (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120316256
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:164:y:2021:i:c:p:1527-1539
DOI: 10.1016/j.renene.2020.10.059
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().